Force Generation in Lamellipodia is a Discontinuous Process with Nanometer Discrete Forward and Backward Jumps
نویسندگان
چکیده
منابع مشابه
Force generation in lamellipodia is a probabilistic process with fast growth and retraction events.
Polymerization of actin filaments is the primary source of motility in lamellipodia and it is controlled by a variety of regulatory proteins. The underlying molecular mechanisms are only partially understood and a precise determination of dynamical properties of force generation is necessary. Using optical tweezers, we have measured with millisecond (ms) temporal resolution and picoNewton (pN) ...
متن کاملForward-backward SDEs with Discontinuous Coefficients
In this paper we are interested in the well-posedness of a class of fully coupled forward-backward SDE (FBSDE) in which the forward drift coefficient is allowed to be discontinuous with respect to the backward component of the solution. Such an FBSDE is motivated by a practical issue in regime-switching term structure interest rate models, and the discontinuity makes it beyond any existing fram...
متن کاملForward and Backward Uncertainty Quantification in Optimization
This contribution gathers some of the ingredients presented during the Iranian Operational Research community gathering in Babolsar in 2019.It is a collection of several previous publications on how to set up an uncertainty quantification (UQ) cascade with ingredients of growing computational complexity for both forward and reverse uncertainty propagation.
متن کاملBackward and forward path following control of a wheeled robot
A wheeled mobile robot is one of the most important types of mobile robots. A subcategory of these robots is wheeled robots towing trailer(s). Motion control problem, especially in backward motion is one of the challenging research topics in this field. In this article, a control algorithm for path-following problem of a tractor-trailer system is provided, which at the same time provides the ab...
متن کاملThe elementary events underlying force generation in neuronal lamellipodia
We have used optical tweezers to identify the elementary events underlying force generation in neuronal lamellipodia. When an optically trapped bead seals on the lamellipodium membrane, Brownian fluctuations decrease revealing the underlying elementary events. The distribution of bead velocities has long tails with frequent large positive and negative values associated to forward and backward j...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2010
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2009.12.2311